Natural resources : technology, economics and policy /
edited by U. Aswathanarayana
- London: CRC Press, 2012.
- xxxv, 474p.
Machine generated contents note: Section 1 Introduction -- 1.1. Symbiotic relationship between mangroves and coastal communities -- 1.2. Earth system science for global sustainability -- 1.3."Virtual" natural resources -- 1.4. Natural resources and globalization -- 1.4.1. General considerations -- 1.4.2. Different aspects of globalisation -- 1.4.3. Natural resources and violent conflicts -- 1.5. Innovation chain and economic growth -- References -- Section 2 Water resources management -- 2.1. Holistic water resources management, based on the hydrological cycle (U. Aswathanarayana, India) -- 2.1.1. Introduction -- water and culture -- 2.1.2. Water balance -- 2.1.3. Green and blue waters -- 2.1.4. Conjunctive use of water resources -- 2.1.5. Water resources endowments of countries -- 2.1.6. Decision -- Support system for water resources management -- 2.1.7. Paradigm of global water resources management -- 2.1.8. How best to use water resources -- India as a case -- References. Contents note continued: 2.2. Economic frameworks to inform decision-making (U. Aswathanarayana, India) -- 2.2.1. An integrated economic approach to water scarcity -- 2.2.2. Role of the private sector in the water resources management -- 2.2.3. Tools for policy makers -- 2.2.4. Quo vadis? -- Reference -- 2.3. Multiple perspectives on water: A synthesis (Ramaswamy R. Iyer, India) -- 2.3.1. Nature of water -- 2.3.2. Perspectives on water -- References -- 2.4. Water pollution (U. Aswathanarayana, India) -- 2.4.1. Pathways of pollution -- 2.4.2. Activities that can cause groundwater pollution -- 2.4.3. Leachates from solid wastes, source-wise -- 2.4.4. Pollution from liquid wastes, source-wise -- 2.4.5. Contaminants, type-wise -- 2.4.6. Anthropogenic acidification of waters -- 2.4.7. Water pollution arising from waste disposal -- 2.4.8. Transport of contaminant solutes in aquifers -- References -- 2.5. Sequential use of water resources (U. Aswathanarayana, India). Contents note continued: 2.5.1. Water quality in relation to water use -- 2.5.2. Estimates of water value for different uses -- 2.5.3. Water value in system context -- 2.5.4. Price coordination of water supplies -- 2.5.5. Principles of optimization -- 2.5.6. Price coordination of a typical irrigation system -- 2.5.7. Optimization methods in water management -- 2.5.8. Allocation of water to competing users -- 2.5.9. Decision-making process -- References -- 2.6. Wastewater reuse systems (U. Aswathanarayana, India) -- 2.6.1. Introduction -- 2.6.2. Bio-pond treatment of waste water -- 2.6.3. Types of wastewater reuse -- 2.6.4. Use of wastewater in irrigation -- 2.6.5. Geopurification -- 2.6.6. Economics of wastewater reuse -- 2.6.7. Health hazards in wastewater reuse -- 2.6.8. Use of sewage sludge as fertilizer -- References -- 2.7. Etiology of diseases arising from toxic elements in drinking water (U. Aswathanarayana, India) -- 2.7.1. Routes and consequences of ingestion of toxic elements. Contents note continued: 2.7.2. Arseniasis -- 2.7.3. Fluorosis -- 2.7.4. Risk assessment -- References -- 2.8. Water and agriculture: Usefulness of agrometeorological advisories (L.S. Rathore, N. Chattopadhyay & S.V. Chandras, India) -- 2.8.1. Introduction -- 2.8.2. Impact of climatic variability on agricultural water challenges -- 2.8.3. Usefulness of agro-climatic information in water use -- 2.8.4. Farmer-customized agrometeorological advisories -- 2.8.5. Integration of agro-climatic resources with agricultural inputs -- 2.8.6. Projection of water status in Indian agriculture under future climate change scenario -- 2.8.7. How to produce more food (through optimization of soil-water-plant system) -- 2.8.8. How to do with less water (in agriculture, industry and domestic purposes) -- 2.8.9. Conclusion -- References -- 2.9. Remote sensing in water resources management (Venkat Lakshmi, USA) -- 2.9.1. Background and societal importance -- 2.9.2. Current monitoring methodologies. Contents note continued: 2.9.3. Land surface modeling and data assimilation -- References -- 2.10. Case history and exercises (B. Venkateswara Rao & V. Varalakshmi, India) -- 2.10.1. Introduction -- 2.10.2. Description of the study area -- 2.10.3. Rainfall analysis of the catchment area -- 2.10.4. Analysis of inflows to the reservoirs -- 2.10.5. Verification of the cropping area in the catchments -- 2.10.6. Water table contour maps and analysis -- 2.10.7. Discussion on hydrographs of observation wells -- 2.10.8.Composite hydrographs of piezometer wells -- 2.10.9. Rainfall and water level rise relationship -- 2.10.10. Influence of premonsoon groundwater levels over the recharge of rainfall water to the ground -- 2.10.11. Implications of the study and conclusions -- References -- Exercises -- 2.11. Basic research and R & D (B. Rajagopalan & C. Brown, USA) -- 2.11.1. Background -- Traditional water resources management -- 2.11.2. New paradigm for water resources management. Contents note continued: 2.11.3.R & D for managing water resources under uncertainty -- 2.11.4. Colorado river management -- Case study -- References -- Section 3 Mineral resources management (U. Aswathanarayana, India) -- 3.1. Introduction -- 3.1.1. Environmental challenges facing the mining industry -- 3.1.2. Mining, environmental protection and sustainable development -- 3.1.3. Economics of environmental protection in mining -- 3.1.4. Technology trends in the mining industry -- 3.1.5. Automation in the mining industry -- 3.1.6. Technology-driven developments in the mining industry -- 3.2. Mineral demand in response to emerging technological needs -- 3.2.1. Emerging technological needs -- 3.2.2. Rare earth elements -- 3.2.3. Gold -- 3.2.4. Aluminium -- 3.2.5. Copper -- 3.2.6. Lead -- 3.3. Control technologies for minimizing the environmental impact of mining -- 3.3.1. Acid mine drainage -- 3.3.2. Tailings disposal -- 3.3.3. Dust control technologies -- 3.3.5. Treatment of wastewater. Contents note continued: 3.3.6. Subsidence -- 3.3.7. Noise and vibration -- 3.3.8. Planning for mine closure -- 3.4. Health and socio-economic impacts of the mining industry -- 3.4.1. Health hazards of the mining industry -- 3.4.2. Health hazards due to dusts -- 3.4.3. Matrix diagrams -- 3.4.4. Total project development -- A visionary approach -- 3.5. Artisanal mining -- 3.6. Ways of ameliorating the adverse consequences of mining industry -- 3.6.1. Rehabilitation of mined land -- 3.6.2. Beneficial use of mining wastes -- 3.6.3. Reuse of mine water -- 3.7. Iron ore mine of Kiruna, Sweden -- A case study -- 3.8. Basic research and R & D -- References -- Section 4 Energy resources management (U. Aswathanarayana, India) -- 4.1. Coal resources -- 4.1.1. Importance of coal in the energy economy -- 4.1.2. Environmental impact of the coal cycle -- 4.1.3. Wastes from coal industries -- 4.1.4. Power generation technologies -- 4.1.5. China -- a country case study -- 4.2. Oil and gas resources -- 4.2.1. Oil. Contents note continued: 4.2.2. Natural gas -- 4.2.3. Shale gas -- 4.2.4. Saudi Arabia -- a country case study -- 4.3. Nuclear fuel resources -- 4.3.1. Introduction -- 4.3.2. Resource position -- 4.3.3. Cost of nuclear power -- 4.3.4. Projected nuclear power capacity -- 4.3.5. New reactor designs -- 4.3.6.R & D areas -- 4.3.7. Country case study of France -- 4.4. Renewable energy resources -- 4.4.1. Why renewables? -- 4.4.2. Renewable energy sources -- 4.5. Strategy for a low-carbon footprint -- 4.5.1. Carbon emissions and climate change -- 4.5.2. Mitigation of climate change -- 4.6. Exercises -- References -- Section 5 Bio resources and biodiversity (S. Balaji, India) -- 5.1. Introduction -- 5.2. What is biodiversity? -- 5.2.1. Endemism and keystone species -- 5.3. Why conserve biodiversity -- 5.4. Global biodiversity resources -- 5.5. Erosion of biodiversity -- 5.5.1. Causes for the erosion of biodiversity -- 5.5.2. Habitat loss -- 5.5.3. Invasive alien species -- 5.5.4. Pollution. Contents note continued: 5.5.5. Human population -- 5.5.6. Overexploitation -- 5.5.7. Arresting biodiversity loss -- 5.6. Climate change and biodiversity -- 5.6.1. Role of forests in climate change mitigation -- 5.7. Role of biodiversity in medicine, agriculture and forestry -- 5.7.1. Biodiversity in medicine -- 5.7.2. Agro-biodiversity -- 5.7.3. Biodiversity and forestry -- 5.8. Biodiversity and biotechnology -- 5.8.1. Biotechnology for biodiversity assessment -- 5.8.2. Biodiversity utilization -- 5.8.3. Impacts -- 5.8.4. Biotechnology for prospecting genetic diversity -- 5.8.5. Genetically modified foods -- 5.8.6. Environmental biotechnology -- 5.8.7. Pragmatic use of biotechnology -- 5.9. Economics and policy of biodiversity management -- 5.9.1. Economics and policy -- 5.9.2. Tangible and intangible uses of biodiversity -- 5.9.3. Conservation strategy -- 5.10. Future prospects -- 5.10.1. The strategic plan -- Aichi targets 2011-2020 -- 5.10.2. Scope for future research. Contents note continued: 5.11. Conclusion: Living in harmony with nature -- 5.12. Sample exercises -- References -- Section 6 Disaster management (U. Aswathanarayana, India) -- 6.1. Hazardous events (natural, mixed and technological) -- 6.2. Vulnerability to hazardous events -- 6.2.1. Earthquakes -- 6.2.2. Tsunamis -- 6.2.3. Volcanic hazards -- 6.2.4. Slope failures, landslides and subsidence -- 6.3. Marine hazards -- 6.3.1. Introduction -- 6.3.2. Types of marine hazards -- 6.3.3. Natural hazards -- 6.3.4. Man-made hazards -- References -- 6.4. Nuclear energy accidents -- 6.4.1. The Three Mile Island (TMI) accident -- 6.4.2. Chernobyl reactor accident -- 6.4.3. Fukushima -- Daiichi reactor accident -- 6.5. Integrated disaster preparedness -- 6.5.1. Dual use technologies and practices -- 6.5.2. Resiliency linked to social-ecological systems -- 6.5.3. Risk management through securitisation -- 6.5.4. Monitoring and warning systems -- 6.5.5. Science-based and people-based Hazard preparedness systems. Contents note continued: 6.5.6. Risk communication -- 6.5.7. Rehabilitation measures -- 6.6. Basic research and R & D --