Planarity and street network representation in urban form analysis/

By: Material type: ArticleArticlePublication details: Sage, 2020.Description: Vol. 47, Issue 5, 2020, ( 855–869 p.)Online resources: In: Environment and planning B: planning and design (Urban Analytics and City Science)Summary: Models of street networks underlie research in urban travel behavior, accessibility, design patterns, and morphology. These models are commonly defined as planar, meaning they can be represented in two dimensions without any underpasses or overpasses. However, real-world urban street networks exist in three-dimensional space and frequently feature grade separation such as bridges and tunnels: planar simplifications can be useful but they also impact the results of real-world street network analysis. This study measures the nonplanarity of drivable and walkable street networks in the centers of 50 cities worldwide and then examines the variation of nonplanarity across a single city. It develops two new indicators—the Spatial Planarity Ratio and the Edge Length Ratio—to measure planarity and describe infrastructure and urbanization. While some street networks are approximately planar, we empirically quantify how planar models can inconsistently but drastically misrepresent intersection density, street lengths, routing, and connectivity.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Vol info Status Date due Barcode Item holds
E-Journal E-Journal Library, SPAB E-Journals Vol. 47(1-9), Jan-Dec, 2020 Available
Total holds: 0

Models of street networks underlie research in urban travel behavior, accessibility, design patterns, and morphology. These models are commonly defined as planar, meaning they can be represented in two dimensions without any underpasses or overpasses. However, real-world urban street networks exist in three-dimensional space and frequently feature grade separation such as bridges and tunnels: planar simplifications can be useful but they also impact the results of real-world street network analysis. This study measures the nonplanarity of drivable and walkable street networks in the centers of 50 cities worldwide and then examines the variation of nonplanarity across a single city. It develops two new indicators—the Spatial Planarity Ratio and the Edge Length Ratio—to measure planarity and describe infrastructure and urbanization. While some street networks are approximately planar, we empirically quantify how planar models can inconsistently but drastically misrepresent intersection density, street lengths, routing, and connectivity.

There are no comments on this title.

to post a comment.

Library, SPA Bhopal, Neelbad Road, Bhauri, Bhopal By-pass, Bhopal - 462 030 (India)
Ph No.: +91 - 755 - 2526805 | E-mail: [email protected]

OPAC best viewed in Mozilla Browser in 1366X768 Resolution.
Free counter